

#### LA-UR-17-28706

Approved for public release; distribution is unlimited.

Title: Least-squares elastic reverse-time migration of microseismic data

using inverted moment-tensor sources

Author(s): Chen, Yu

Gao, Kai Huang, Lianjie

Intended for: SEG 2017, 2017-09-25/2017-09-28 (Houston, Texas, United States)

Issued: 2017-09-28 (rev.1)





# Least-squares elastic reverse-time migration of microseismic data using inverted moment-tensor sources

#### Yu Chen, Kai Gao and Lianjie Huang

Geophysics Group, Los Alamos National Laboratory Los Alamos, NM 87545, USA



# **Objective**

Imaging fracture zones using least-squares reverse-time migration of microseismic data

## **Outline**

- Introduction
- Adaptive moment-tensor joint inversion
- Least-squares reverse-time migration
- Conclusions

## **Outline**

- Introduction
- Adaptive moment-tensor joint inversion
- Least-squares reverse-time migration
- Conclusions

## Introduction

- ➤ Monitoring CO<sub>2</sub> reservoirs for long-term storage using induced microseismicity
- Using microseismic data
  - To directly image fracture zones using microseismic data, and
  - To imaging sedimentary layers surrounding microseismic clusters
- Conventional least-squares reverse-time migration using explosive or vector sources cannot match radiation patterns of microseismic data

## Introduction

- ➤ We recently developed a new method for adaptive moment-tensor joint inversion of microseismic data acquired from a single-borehole geophone array.
- > In this work:
  - We employ least-squares reverse-time migration of microseismic data using moment-tensor sources.
  - We apply the method to microseismic data acquired at the Aneth CO<sub>2</sub>-Enhance Oil Recovery (EOR) field using single vertical borehole.

## The Aneth CO<sub>2</sub>-EOR field at Utah

- CO<sub>2</sub> injection from 2007 to 2009
- > 23 levels of geophones within a vertical borehole spanning from 800 to 1700 m



(Soma and Rutledge, 2013)



# Aneth CO<sub>2</sub>-EOR field

- More than 3000 microseismic events detected from May 2008 to March 2009
- ➤ 1266 events were relocated using direct, reflection and diffraction waves

(Soma and Rutledge, 2013)



## **Outline**

- Introduction
- Adaptive moment-tensor joint inversion
- Least-squares reverse-time migration
- Conclusions

# Adaptive moment-tensor joint inversion method and its application to the Aneth CO<sub>2</sub>-EOR field

- Uncertainty of moment-tensor inversion with limited azimuthal coverage
- Clustering events with similar seismic waveforms and radiation patterns
- Similar focal mechanisms in the adjacent areas (e.g. Dahm et al., 1999; Rutledge, 2004; Maxwell, 2014)
- Inverting the clustered events with the same focal mechanism



# An adaptive joint inversion

- ➤ Joint inversion: events in a cluster are inverted using the same focal mechanism (strike, dip, rake, ISO and CLVD) but different source durations and moments
- Adaptive inversion: each event is further inverted based on the joint inversion result with a search range of ±10° for strike, dip and rake, ±0.05 for ISO and CLVD

### Synthetic test for joint inversion

50 events with the same focal: stk:220 dip:45 rake:0 iso:0.1 clvd:0.2 Same configuration as the Aneth field





### Adaptive joint inversion with varying focal

50 events with varying focals: stk:220 dip:45  $\pm$  (up to 10) rake:0 iso:0.1 clvd:0.2





## **Individual inversion**

Left: full moment tensor

Right: double couple only



#### Joint inversion result

- Seven clusters based on similarities of microseismic waveforms and radiation pattern
- Consistent but slightly varying focal mechanisms of the seven clusters
- Large non-double couple component



## **Adaptive inversion result**



## **Outline**

- Introduction
- Adaptive moment-tensor joint inversion
- Least-squares reverse-time migration
- Conclusions

# Least-squares reverse-time migration of microseismic data using inverted moment tensors

- Explosive source cannot make use of the strong S waves
- Explosive and vector source cannot match the radiation pattern of microseismic source



### Moment-tensor source in finite difference

> Add the moment tensor as the stress in waveform modeling

$$\sigma_{ij} = \sigma_{ij} + \frac{\Delta t M_{ij}(t)}{V}, i = 1, 3, j = 1, 3$$

# **Synthetic test**



## **Up and Down going wavefield**

#### **Explosive sources**

#### **Moment-tensor sources**



# Right going wavefield

#### **Explosive sources**

#### **Moment-tensor sources**



## **Application to the Aneth field**

- Selecting 38 microseismic events from the seven clusters
- Forming a 2D line
- Performing the imaging in a3D model



## **Up and Down going wavefield**

#### **Explosive sources**

#### **Moment-tensor sources**



## Right going wavefield

#### **Explosive sources**

# Distance (km) 2.0 0.5 1.0 1.5 0.7-1.2-Depth (km) 2.2-2.7-

#### **Moment-tensor sources**



# **Explosive sources**



# **Moment-tensor sources**



## **Outline**

- Introduction
- Adaptive moment-tensor joint inversion
- Least-squares reverse-time migration
- Conclusions

## **Conclusions**

- Developed an adaptive moment-tensor joint inversion method and applied to the Aneth field
  - The joint inversion inverts clustered events with the same focal mechanism
  - The adaptive inversion inverts each event in a search range around the joint inversion result
- 2. Developed a least-squares reverse-time migration algorithm for microseismic data
  - Image facture zones around microseismic clusters
  - Image several sedimentary layers above and beneath the sources
  - Need to use moment-tensor sources to produce correct migration images

# **Acknowledgements**

- The work was supported by the U.S. Department of Energy through contract DE-AC52-06NA25396 to Los Alamos National Laboratory.
- The computation was performed using the super-computer resources of LANL's Institutional Computing Program.

# Thank you for your attention!